STINGER SOFTWARE FOR

CALCULATION OF SHAPED CHARGE WARHEAD JET PARAMETERS

Method

Combined method:

•Analytical based on :

- PER (Pugh, Eichelberger, and Rostoker) jet formation theory
- Modified version of the M. Defouneaux metal acceleration model for final plate velocity,
- The shaped-charge penetration theory of DSM (DiPersio, Simon and Merendino) for penetrationstandoff curves.
- The piece wise penetration of Defourneaux for hole profiles,

•Semi-empirical techniques based on published collected data

Method – Cont.

Formation of jet:

Warhead is divided in axial direction into zones (zonal elements) of constant thickness.

Upon the action of detonation wave liner element is accelerated toward the liner axis with collapsing velocity, where, after interaction with opposite element, form axial jet toward the base of the liner and slug toward the apex of (a) the liner.

Detonation Front

Uncertainty: Depends on configuration, up to 10 %

Capability

Accurate prediction of:

- jet and Jet-tip velocity and mass
- •slug velocity and mass,
- collapse velocity,
- lead pellet formation.

Calculation of penetration parameters in homogeneous steel:

- hole radius,
- penetration depth,
- •variation of total penetration depth with standoff distance

The program is fast, robust and reliable. Compression to experiments as well as to more sophisticated hydrodynamic computer codes show good agreement.

Purpose

Detail calculation of all parameters of shape charge jet and penetration process.

Analysis of the influence of various design parameters on the jet penetrability:

- Charge characteristics
- Liner thickness
- Liner cone angle,
- Initiation point,
- Standoff distance,
- Confinement characteristics,
- Target characteristics

Ranges of Basic Input Quantities

- □ Caliber: 20÷200mm
- □ Charge shape: cylinder, cylinder cone.
- Charge confinement: In cylindrical case
- □ Charge material: 24 predefined, plus user define possibility.
- Liner shape: cone and rounded apex cone with linearly varying thickness.
- □ Liner material: defined by density.
- □ Initiation point: defined by coordinates.
- Target material: Metal defined by density and Brinell hardness
- **Brake up time: Automatically determined or specified.**

Limitations

The current version of the Program requires several empirically determined constants. Some values of these constants were determined upon the fitting the results of various experiments, and they are stored in the Program. But, it is recommended that for each real case user determine these constant from the experiment.

The current version of the Program does not support definition of the liner by coordinates. This option is under construction.

Main Menu

Analytical Shaped Charg	e Computation					
Input data file	C:\C_Stinger\T-HI	AT WH Short	Course Nov-14\Input data for Stinger\T-HEAT WH 120mm			About Program
Project title T-HEAT WH 120mm			Open Input File	Clear All Data	Input Data Description	
Project subtitle Main warhead, Constant liner th		ckness			Output Files Description	
Computation Optio	ns					
Hole volume constant CK [-] 0.00		Break up Time of the Jet Will be computed		Stand off Distance Vary from 0 to 25 charge diameters 		
Number of zones	along Z-axis [-]	69	O Enter value [us]	0.0	O Use value [cm]	0.0
Liner Characteristic	cs		Warhead Characteristics		Execution	Results
Shape Cone C Defined by coordinates		Explosive Type Identifier		ACCEPT DATA	Penetration Depth	
Cone Geometry					RUN	Total Penetration
Outer cone radiu	ıs at base [cm]	5.7000	Explosive density [g/cm ³]	1.7200	File Manager	Output
Outer cone half	angle [°]	30.00	Expl. detonation velocity [cm/	us] 0.7980	Save Input File	Initial Position
Cone Thickness Constant C Linearly varying		Position of Initiation Point from Liner Apex		Save Input File As	Collapse Process	
Thickness at con	ne base - EPS [cm]	0.2000	Axial distance [cm]	3.7000	Open/View File	Mass Vel. Energy
Inner cone half a	angle - Alphai [°]	30.00	Radial distance [cm]	4.8000		Benetration Vers
Apex roundness	radius [cm]	0.5000			Collapse Process	
Density of the lin	ner [g/cm³]	8.9400	C Unconfined		Masses & Velocitie	Alphai Analysis
- Target Characteristics			 Confined 		Penetration Results	5 EPS Analysis
Density of the ta	arget [g/cm³]	7.8000	Confinement factor [-]	0.0600	□ Influence of EPS	
Brinell hardness	HB [daN/mm²]	300.00	Confinement density [g/cm ³]	2.8000	Draw	EXIT

Results

- □ Sketch (drawing) of projectile
- Files and diagrams with calculated jet parameters
- Files and diagrams with calculated penetration parameters

General Data and Computation Options

Liner & Target Characteristics

Warhead Characteristics

Control Buttons

Help Buttons

About Program

Input Data Description

Output Files Description

Results

- □ Sketch (drawing) of projectile
- Files and diagrams with calculated jet parameters
- Files and diagrams with calculated penetration parameters

Sketch of the Warhead

T-HEAT WH 120mm

Main warhead, Constant liner thickness

Output Files

Results				
Penetration Depth				
Total Penetration				
Output				
Initial Position				
Collapse Process				
Mass, Vel., Energy				
Penetration Vars				
Alphai Analysis				
EPS Analysis				

Output Files – Cont.

FILE NAME	DESCRIPTION
Output.txt	Input data and various calculated quantities.
InitialPosition.txt	Charge and liner characteristics vs. axial position of the cone zonal elements.
CollapsePrVar.txt	Data which describes collapse process of the liner
MassesVelEn.txt	Data about masses and velocities of the liner, jet and slug.
PenetrationPhVar.txt	Various parameters which describe penetration process of the jet through target.
PenetrationDepth.txt	Data of depth of penetration and the radius of the hole inside target corresponding with the number of zones towards liner axis.
TotalPenetration.txt	Values of total penetration into target in function of standoff distance between liner base and target.
AlphaiAnalysis.txt	Penetration parameters for different inner liner cone half angle.
EPSAnalysis.txt	Penetration parameters for different liner thickness at cone base.

Collapse Velocity

105-mm Shaped Charge

Collapse Angle

105-mm Shaped Charge

Bending Angle

105-mm Shaped Charge

Liner, Jet & Slug Mass

105-mm Shaped Charge

Jet and Slug Velocity

105-mm Shaped Charge

Relative Velocity

105-mm Shaped Charge

Total Penetration

105-mm Shaped Charge

constant thickness of the liner

25

Penetration Depth

105-mm Shaped Charge

constant thickness of the liner

Hole Radius

105-mm Shaped Charge

Hole Radius vs. Penetration Depth

105-mm Shaped Charge

Influence of Cone Angle on Jet Tip Velocity

105-mm Shaped Charge

constant thickness of the liner

29

Influence of Cone Angle on Total Penetration & SO for PT_{max}

105-mm Shaped Charge

constant thickness of the liner

Influence of Cone Angle on Penetration & Hole Radius

105-mm Shaped Charge

Influence of Liner Thickness on Jet Tip Velocity

105-mm Shaped Charge

constant thickness of the liner

32

Influence of Liner Thickness on Total penetration & SO for PT_{max}

105-mm Shaped Charge

Influence of Liner Thickness on Penetration & Hole Radius

105-mm Shaped Charge

Comparison With Experiments

On the next diagrams comparison of the calculation results with some other sources are shown for the following sketches:

- 1. Experiment, 105 mm Shaped Charge, AD-277458
- 2. Experiment, BRL AD-246352
- 3. Calculation by program SCAP

Comparison with 105 mm Shaped Charge, AD277458

Jet and slug velocity vs. relative liner position

Liner position [% from apex]

Comparison with Experiment BRL AD-246352

Jet velocity vs. relative liner position

Comparison with Calculation of Program SCAP

Jet velocity and collapse velocity vs. relative liner position

Comparison with Calculation of Program SCAP - Cont. 1

Penetration vs. standoff distance.

Comparison with Calculation of Program SCAP - Cont. 2

Penetration vs. relative liner position

